制药废水是一种典型的高毒性、高浓度、难降解有机废水,如果要满足排放标准的要求,一般需要多种工艺组合处理。本实验采用了FYSO(低温催化湿式氧化)技术与EP-凯森电化学催化氧化技术相结合的工艺对天成药业生化二沉池出水进行了处理研究,考察了FYSO过程中反应压力、反应温度、废水pH值、氧化剂投加量对该废水COD、氨氮的影响,以及考察了EP-凯森电化学催化氧化过程中废水pH值、电流密度及电解时间对COD、氨氮去除率的影响。
1、实验机理
1.1 FYSO技术
FYSO技术是催化湿式氧化技术的一种。在一种特殊的催化剂参与下,以多种类型的氧化剂作为引发剂,羟基自由基在一定的温度和压力下生成,废水中有机物被氧化。这样既可以打断废水中残留的对微生物有毒害作用的例如抗生素、硝基苯及其他烯烃、炔烃和苯环类等有机物的碳链结合键,提高废水的可生化性,又可以把废水中有机物绝大部分氧化分解成CO2和H2O等无害成分,降低废水的COD(化学需氧量),使废水达到排放标准。
通过实验可得,随着反应温度的增加,COD及氨氮质量浓度均有明显降低,对COD的处理效果显著。在温度130℃时,COD由480mg/L降至97mg/L,去除率为81.2%。随着温度的升高,去除率增加,但当温度超过150℃时,随着温度的升高反应速率降低,去除率趋于平缓,且温度升高时溶解氧浓度降低、对反应设备的要求更高。因此确定该实验的反应温度为130~150℃。
3.1.2 反应压力对FYSO技术处理效果的影响
反应压力是影响FYSO技术处理有机物的重要因素,它决定了氧分压的大小,影响水相中的溶解氧浓度,直接影响了氧化反应速率。在反应温度150℃、pH值3、H2O2投加量0.3%、反应时间60min的相同条件下,考察压力在0.2MPa,0.4MPa,0.6MPa,0.8MPa,1.0MPa时FYSO技术对该二沉池出水中COD、氨氮的去除效果
通过实验可得,升高反应压力,COD的去除率增加。在反应压力0.4MPa时,COD去除速率快。继续升高压力,反应速率降低,去除率趋于稳定。因此确定该实验的反应压力为0.4MPa。
3.1.3 废水pH值对处理效果的影响
废水pH值对有机物的去除具有一定的影响作用,pH值改变,有机物的存在形态及化学性质可能发生改变,并且pH值影响催化剂的催化性能,进而影响FYSO技术处理效果。在反应温度150℃、压力0.4MPa、H2O2投加量0.3%、反应时间60min的相同条件下,考察废水pH值在1,3,5,7,9时FYSO技术对该二沉池出水中COD、氨氮的去除效果
通过实验可得,H2O2投加量越大,强化氧化效率越高。当氧化剂投加量为0.3%时,COD去除率为80.4%。继续增大氧化剂用量,处理速率下降且运行费用增加较多。因此综合确定氧化剂投加量为0.3%。
3.2 EP-凯森电化学催化氧化技术影响因素的考察
对FYSO出水采用EP-凯森电化学催化氧化技术深度处理,考察废水pH值、电流密度及电解时间对处理效果的影响。
3.2.1 废水pH值对EP-凯森电化学催化氧化技术处理效果的影响
在电流密度400A/m2、电解20min的前提下考察废水pH值对EP-凯森电化学催化氧化技术处理效果的影响